Stable Ag@oxides nanoplates for surface-enhanced Raman spectroscopy of amino acids.

نویسندگان

  • Peng Du
  • Lan Ma
  • Yinghui Cao
  • Di Li
  • Zhenyu Liu
  • Zhenxin Wang
  • Zaicheng Sun
چکیده

Surface enhancement Raman scattering (SERS) is a powerful technique for detecting low-concentration analytes (chemicals and biochemicals). Herein, a high-performance SERS biosensing system has been created by using highly stable Ag@oxides nanoplates as enhancers. The Ag nanoplates were stabilized by coating a uniform ultrathin layer of oxides (SiO2 or TiO2) on the Ag surface through a simple sol-gel route. The thin oxide layer allows the plasmonic property of the original Ag nanoplates to be retained while preventing their contact with external etchants. The oxides provide an excellent platform for binding all kinds of molecules that contain a COOH group in addition to a SH group. We demonstrate that Ag@oxides have high performance with respect to the typical SERS molecule 4-ATP, which contains a typical SH group. Ag@oxides also can be directly employed for the SERS detection of amino acids. The highly stable Ag@oxides nanoplates are believed to hold great promise for fabricating a wide range of biosensors for the detection of many other biomolecules and may also find many interesting opportunities in the fields of biological labeling and imaging.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unification of Surface Enhanced Raman Spectroscopy of Dyes Using One Pot Synthesized Stabilized Ag Nanoparticles

stabilized Ag Nanoparticles (NPs) were synthesized using Lee-Meisel method under three different conditions in an oil bath. UV-Vis spectroscopy of the Ag NPs showed a Localized Surface Plasmon (LSP) band around 430 nm, indicating Ag NPs had a size range around 40 nm. To fabricate a surface Enhanced Raman Spectroscopy (SERS) substrate, LSP properties of Ag NPs was employed with the goal of detec...

متن کامل

Silver nanoplates prepared by modified galvanic displacement for surface-enhanced Raman spectroscopy.

Silver nanoplates were prepared by modified galvanic displacement on commercial copper foil. SEM, TEM, UV-vis and XPS were employed to analyze those closely packed silver nanoplates. This type of surface-enhanced Raman spectroscopy substrates showed strong surface plasmon absorption and reliable surface-enhanced Raman activity.

متن کامل

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Molecular Diagnosis of Plasma Phenylalanine in Neonates with Phenylketonuria Disease Using Biological Sensors Based on Surface-Enhanced Raman Spectroscopy (SERS)

In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to de...

متن کامل

A surface-enhanced Raman spectroscopy study of thin graphene sheets functionalized with gold and silver nanostructures by seed-mediated growth

We describe a simple method for decorating graphene (1–5 layers) with Au and Ag nanostructures (nanoparticles, nanorods, and nanoplates). We deposit graphene electrostatically from highly-oriented pyrolytic graphite onto Si/SiO2 surfaces functionalized with (aminopropyl)trimethoxysilane and grow the metal nanostructures by a seed-mediated growth method from hexanethiolate-coated Au monolayer-pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 11  شماره 

صفحات  -

تاریخ انتشار 2014